# DEHYDROFLUORIERUNG UND SPALTUNG DER SILICIUM-STICKSTOFF-BINDUNG IN BORTRIFLUORID/SILYLAMIN-SYSTEMEN

GERNOT ELTER, OSKAR GLEMSER UND WILHELM HERZOG Institut für Anorganische Chemie der Universität Göttingen, Hospitalstraße 8/9 (Deutschland) (Eingegangen den 30. September 1971)

### SUMMARY

Boron trifluoride reacts at  $0^{\circ}$  with silylamines of the type Me<sub>3</sub>Si-NHR (R=Me, Et, Pr, i-Pr, Bu, t-Bu, Ph) to give adducts which are not stable at room temperature. Their decomposition proceeds with the elimination of Me<sub>3</sub>SiF and leads to the formation of aminoboranes having the general composition RNH-BF<sub>2</sub>; these are unstable, too, and decompose further to give the corresponding primary amine/boron trifluoride adducts and *B*-fluoroborazines. Only if R is i-Pr or t-Bu, the intermediately formed aminoboranes can be observed and, in the case of R = t-Bu also isolated.

If the reaction is carried out in the presence of a hydrogen fluoride acceptor, as *e.g.* the diisopropylethylamine/boron trifluoride adduct, one can observe dehydro-fluorination and formation of the [(trimethylsilyl)alkylamino]difluoroboranes  $Me_3$ -Si-NR-BF<sub>2</sub> (R=Me, Et, Pr, i-Pr, Bu). Their thermal decomposition affords *B*-fluoroborazines in quantitative yields.

The IR and NMR spectra are reported.

## ZUSAMMENFASSUNG

Die Reaktion von Bortrifluorid mit Silylaminen des Typs  $Me_3Si-NHR$ (R=Me, Et, Pr, i-Pr, Bu, t-Bu, Ph) bei 0° liefert Addukte, die bei Raumtemperatur instabil sind. Ihr Zerfall geht unter Eliminierung von  $Me_3SiF$  vor sich und führt zur Bildung von Aminoboranen der allgemeinen Zusammensetzung RNH-BF<sub>2</sub>, die ebenfalls instabil sind und sich weiter zu den entsprechenden prim. Amin/Bortrifluorid-Addukten und Fluorborazin-Derivaten zersetzen. Lediglich bei R=i-Pr und t-Bu lassen sich die intermediär gebildeten Aminoborane nachweisen und im Fall von R=t-Bu auch isolieren.

Führt man die Reaktion in Gegenwart eines HF-Fängers wie z.B. dem Addukt von BF<sub>3</sub> und Diisopropyläthylamin aus, so beobachtet man Dehydrofluorierung und Bildung der [(Trimethylsilyl)alkylamino]difluoroborane  $Me_3Si-NR-BF_2$  (R= Me, Et, Pr, i-Pr, Bu). Deren therm. Zersetzung liefert *B*-Trifluoroborazin-Derivate in quantitativer Ausbeute.

Die IR- und NMR-Spektren der dargestellten Verbindungen werden mitgeteilt.

J. Organometal. Chem., 36 (1972)

#### EINLEITUNG

Die Spaltung der Si-N-Bindung durch Borhalogenide (erstmals 1950 von Burg und Kuljian<sup>1</sup> beschrieben) war in den letzten 20 Jahren Gegenstand zahlreicher Untersuchungen<sup>2</sup>. Die bisher erhaltenen Ergebnisse zeigen, dass alle derartigen Spaltungsreaktionen nach einem einheitlichen Schema (1) ablaufen, wobei allerdings vorausgesetzt werden muss, dass keine Silylamine eingesetzt werden, die N-H-Bindungen enthalten.

$$>_N - s_i \leftarrow + Ha_i - B \leftarrow - - - - >_N - B \leftarrow + Ha_i - S_i \leftarrow (1)$$

Verwendet man dagegen Silyamine mit N-H-Gruppierungen, so ergibt sich ausserdem noch die Möglichkeit einer Seitenreaktion gemäss Gl. (2):

Dieser Typ einer Dehydrohalogenierungsreaktion wurde zuerst von Wells und Collins<sup>3</sup> am Beispiel der Umsetzung von Hexamethyldisilazan mit Bortrichlorid beobachtet. Kürzlich konnten wir für die analoge Reaktion mit Bortrifluorid ein entsprechendes Verhalten nachweisen<sup>4</sup>.

In der vorliegenden Arbeit sollte geprüft werden, ob sich die für Hexamethyldisilazan gefundenen Resultate auf weitere Silylamine der allgemeinen Zusammensetzung Me<sub>3</sub>Si-NHR übertragen liessen.

#### ERGEBNISSE UND DISKUSSION

Die Einwirkung von Bortrifluorid-Äthylätherat auf Silylamine des Typs  $Me_3SiNHR$  bei 0° führt gemäss Gl. (3) zu kristallinen Addukten, die bis ca. 10° stabil sind.

$$BF_{3} \cdot OEt_{2} + Me_{3}Si - NHR \xrightarrow{0^{\circ}} BF_{3} \cdot Me_{3}Si - NHR + OEt_{2}$$
(3)  
R = Me, Et, Pr, i-Pr, Bu

Die Reaktion (3) verläuft nicht ganz quantitativ, weil die entstehenden Verbindungen in Äther etwas löslich sind und dort ein Gleichgewicht bilden, das wegen der nicht so stark ausgeprägten Donoreigenschaften der Silylamine zu einem geringen Teil auf Seiten des  $BF_3$ -Ätherats liegt.

Addukte mit R=t-Bu und Ph lassen sich unter den genannten Reaktionsbedingungen nicht isolieren, da sie bereits unterhalb von 0° zerfallen. Die Zersetzung der übrigen Addukte setzt erst bei Raumtemperatur mit merklicher Geschwindigkeit ein und führt zunächst zur Eliminierung von Me<sub>3</sub>SiF (Gl. 4):

$$BF_3 \cdot Me_3Si - NHR \xrightarrow{25^\circ} RNH - BF_2 + Me_3SiF$$
(4)

In Übereinstimmung mit den Arbeiten von Greenwood et al.5,6 konnten wir die ent-

200

standenen (Alkylamino)difluorborane nur bei R=i-Pr und t-Bu beobachten bzw. isolieren (s. auch Fig. 1). In allen anderen Fällen geht der Zerfall sofort weiter und führt nach Gl. (5) zu prim. Amin/Bortrifluorid-Addukten und den entsprechenden Fluorborazin-Derivaten:

$$2 \operatorname{RNH}-BF_2 \xrightarrow{23^{-1}} BF_3 \cdot \operatorname{RNH}_2 + \frac{1}{3} (-\operatorname{RN}-BF_{-})_3$$
(5)

Verhindert man den Zerfall nach (4) und setzt statt dessen bei 0° einen Fluorwasserstoffakzeptor zu, so ergibt sich einvöllig anderer Reaktionsverlauf.

Wie wir schon am Beispiel des Hexamethyldisilazans zeigen konnten, eignet sich als HF-Fänger besonders ein Addukt aus Bortrifluorid und Diisopropyläthylamin, das erstmals von Harris und Rudner<sup>7</sup> zur Dehydrofluorierung benutzt wurde. Bei einer Reaktion dieses Adduktes mit dem Addukt aus BF<sub>3</sub> und einem N-H-Bindungen enthaltenden Silylamin im Verhältnis 1/1 bei 0° in Äther erhält man gemäss Gl.(6) [(Trimethylsilyl) alkylamino]difluorborane in hoher Ausbeute.

 $BF_3 \cdot Me_3Si - NHR + BF_3 \cdot i - Pr_2NEt \rightarrow Me_3Si - NR - BF_2 + i - Pr_2EtNH^+BF_4^-$  (6)

R = Me, Et, Pr, i-Pr, Bu

 $Me_3Si-NMe-BF_2$  ist ein Festkörper, die restlichen Aminoborane sind farblose, an der Luft stark rauchende Flüssigkeiten, die bei Raumtemperatur eine bemerkenswerte Stabilität aufweisen.

Der Syntheseweg über die Dehydrofluorierung ist insofern von Bedeutung, als es unmöglich ist, die gleichen Verbindungen durch therm. Zersetzung von Bortrifluorid/Bis(trimethylsilyl)alkylamin-Addukten zu erhalten. Wie eine Untersuchung von Nöth und Sprague<sup>8</sup> zeigt, lässt sich auf diesem Weg lediglich die Bildung eines Fluorborazin-Derivates feststellen Gl. (7):

$$BF_3 \cdot (Me_3Si)_2 NMe \longrightarrow \frac{1}{3} (-MeN - BF -)_3 + 2 Me_3SiF$$
(7)

Für eine mögliche Zwischenstufe des  $Me_3Si-NMe-BF_2$  fanden die Autoren keinerlei Anhaltspunkte.

Die von uns angewandte Methode versagt allerdings bei den Substituenten R = t-Bu und R = Ph. Im Falle von R = t-Bu findet keine Dehydrofluorierung statt, als einziges Reaktionsprodukt lässt sich t-BuNH-BF<sub>2</sub> isolieren, während bei R = Ph die Dehydrofluorierung anscheinend nach dem gleichen Schema wie bei den übrigen Substituenten abläuft, das entstandene Aminodifluorboran jedoch unter Abspaltung von Me<sub>3</sub>SiF zerfällt.

Auffällig ist, dass die Methylverbindung als einzige bei Raumtemperatur fest ist. Wie <sup>19</sup>F-NMR-spektroskopische Untersuchungen zeigen, liegt dieses Aminoboran oberhalb des Schmelzpunktes in einem Monomeren/Dimeren Gleichgewicht vor, das sich bei höherer Temperatur zugunsten des Monomeren, bei tieferer Temperatur zugunsten des Dimeren verschiebt. Dieses Verhalten lässt sich dagegen bei den anderen von uns dargestellten Verbindungen nicht beobachten. Die Tatsache, dass die Tendenz zur Dimerisierung in der Reihe der Me<sub>3</sub>Si-NR-BF<sub>2</sub>-Verbindungen abnimmt, wenn der Raumbedarf der Alkylgruppe R steigt, steht in Übereinstimmung mit Messungen an anderen Aminoboranen<sup>9</sup>.

Weitgehende Ähnlichkeit mit anderen (Silylamino)halogenboranen zeigen die Verbindungen auch in bezug auf ihre Neigung zur Abspaltung von Trimethylhalogensilanen<sup>10-12</sup>. Erhitzt man sie unter Rückfluss und destilliert das entweichende Me<sub>3</sub>-SiF laufend über eine Kolonne ab, so lassen sich nach Gl. (8) *B*-Trifluor-*N*-trialkylborazine in quantitativer Ausbeute darstellen.



SPEKTROSKOPISCHE UNTERSUCHUNGEN

Fig. 1 zeigt den thermischen Zerfall von  $BF_3 \cdot Me_3Si-NH-i-Pr$  im <sup>19</sup>F-NMR-Spektrum. Das Ausgangsaddukt liefert ein Quartett bei –28.8 ppm (gegen extern  $C_6F_6$ ) mit einer Kopplungskonstanten J(BF) von 21.3 Hz. Die Zersetzung bei 35° in Dioxan führt zu Me\_3SiF (Multiplett bei –9.0 ppm) und i-PrNH-BF<sub>2</sub> (Quartett bei –13.5 ppm, J(BF) 41.7 Hz). Letzteres liegt in Dioxan dimer vor. Es zeigt in Lösung nur geringe Beständigkeit und zerfällt weiter zu  $BF_3 \cdot i-PrNH_2$  (Quartett bei –17.7 ppm, J(BF) 17.5 Hz) und (–i-PrN-BF–)<sub>3</sub> (Singulett bei –44.2 ppm).



Fig. 1. <sup>19</sup>F-Kernresonanzspektrum der beim Zerfall von  $BF_3 \cdot Me_3Si-NH-i-Pr$  bei 35° in Dioxan entstehenden Produkte, aufgenommen nach 5 Std. ( $C_6F_6$  als externer Standard).

In Tabelle 1 sind die <sup>19</sup>F-NMR-Daten der von uns dargestellten Borfluorid/ Silylamin-Addukte, (Silylalkylamino)borane und Fluorborazin-Derivate zusammengefasst. Sämtliche Addukte zeigen infolge von BF-Kopplung Quartetts, deren Kopplungskonstanten im Bereich von 18.8 Hz (R=Me) bis 21.8 ( $R=SiMe_3$ ) liegen. Bei den monomeren Aminoboranen ist die BF-Kopplung dagegen nicht zu beobachten. Nur für R=i-Pr und SiMe<sub>3</sub> zeigen die Signale bei Raumtemperatur Dublettstruktur und bei Temperaturen über 100° Quartettstruktur. Fehlende BF-Kopplung wird in der Literatur allerdings häufiger erwähnt und mit Kernquadrupolwechselwirkungen

#### TABELLE 1

| <sup>19</sup> F-NMR-daten |     |          |     |      |          |  |  |
|---------------------------|-----|----------|-----|------|----------|--|--|
| Bezogen                   | auf | $C_6F_6$ | als | ext. | Standard |  |  |

| Verbindung                                  | δ [ppm] | J (BF) (Hz) | Bemerkung       |
|---------------------------------------------|---------|-------------|-----------------|
| $BF_3 \cdot Me_3SiNH_2$                     | - 24.3  | 19.0        | Ref. 4          |
| BF <sub>3</sub> · Me <sub>3</sub> SiNHMe    | -18.4   | 18.8        | a               |
| BF <sub>3</sub> · Me <sub>3</sub> SiNHEt    | - 21.9  | 19.6        | a               |
| BF <sub>3</sub> · Me <sub>3</sub> SiNHPr    | -21.6   | 19.3        | a               |
| BF <sub>3</sub> · Me <sub>3</sub> SiNHBu    | -21.9   | 19.2        | а               |
| BF <sub>3</sub> · Me <sub>3</sub> SiNH-i-Pr | -28.8   | 21.3        | a               |
| BF <sub>3</sub> · Me <sub>3</sub> SiNH-t-Bu | 32.6    |             | ь               |
| $BF_3 \cdot Me_3SiNHSiMe_3$                 | - 32.7  | 21.8        | Ref. 4          |
| Ma C: NMA DE                                | -42.1   |             | Monomer         |
| Me <sub>3</sub> SI-NME-BP <sub>2</sub>      | -22.3   | 42.0        | Dimer           |
| Me-Si-NEt-BF                                | -43.0   |             |                 |
| Me <sub>3</sub> Si-NPr-BF,                  | -43.3   |             |                 |
| Me <sub>2</sub> Si-NBu-BF <sub>2</sub>      | -43.2   |             |                 |
| Me <sub>3</sub> Si-N-i-Pr-BF <sub>3</sub>   | - 50.9  |             | Dublettstruktur |
| $Me_{3}Si-NSiMe_{3}-BF_{2}$                 | - 60.3  |             | Dublettstruktur |
| (-HN-BF-),                                  | -37.4   |             | a,c             |
| (-MeN-BE-)                                  | - 35.9  |             | a               |
| (-EtN-BE-)                                  | -33.5   |             |                 |
| $(-PrN-BF-)_{2}$                            | - 35.8  |             |                 |
| (-BuN-BF-)                                  | - 35.8  |             |                 |
| (-i-PrN-BF-)                                | -44.2   |             |                 |
| (-PhN-BF-)                                  | -450    |             | a               |
| $(-Me_3SiN-BF-)_3$                          | - 70.0  |             |                 |

<sup>a</sup> Gesättigte Lösung in Dioxan bei 20°. <sup>b</sup> Gesättigte Lösung in Äther bei 0°. <sup>c</sup> Dargestellt aus (-HN-BCl-)<sub>3</sub> + NaF in Acetonítril bei Raumtemperatur.

von <sup>11</sup>B und <sup>14</sup>N begründet<sup>13</sup>. Die wechselnde Aufspaltung der Signale bei unterschiedlichen Temperaturen im Falle von R=i-Pr und SiMe<sub>3</sub> ist vermutlich auf ähnliche Effekte zurückzuführen.

Die dimere Form von Me<sub>3</sub>Si-NMe-BF<sub>2</sub> ergibt im Gegensatz zur monomeren wieder ein Quartett, wobei die Kopplungskonstante J(BF) mit 42.0 Hz in der Grössenordnung vergleichbarer dimerer Aminoborane liegt<sup>13</sup>.

Bei am Stickstoff unsymmetrisch substituierten Aminodifluorboranen sind die beiden Fluoratome magnetisch nicht äquivalent, wenn wegen des partiellen Doppelbindungscharakters der B-N-Bindung die freie Drehbarkeit behindert ist<sup>14,15</sup>. Da in unserem Fall die zu erwartenden 2 Fluorsignale nicht zu beobachten sind, kann man auf freie oder weitgehend freie Rotation um die B-N-Bindung bei Raumtemperatur schliessen. Zweifellos bewirkt die Beanspruchung des freien Elektronenpaares am Stickstoff durch die *d*-Orbitale des Siliciums eine Schwächung des Doppelbindungscharakters der B-N-Bindung, ein Effekt, der seine Bestätigung durch die Lage der BN-Valenzschwingung bei verhältnismässig niedrigen Wellenzahlen findet.

Die in Tab. 2 angegebenen BN-Banden folgen aus einem Vergleich mit den Spektren anderer Aminodihalogenborane<sup>16-20</sup>, wobei allerdings auf die allgemeinen

| ~   | 1 | ~  |  |
|-----|---|----|--|
| • > | h | )  |  |
| _   | v | سک |  |

| TA | BEL | .LE | 2 |
|----|-----|-----|---|
|----|-----|-----|---|

IR-SPEKTREN DER [(TRIMETHYLSILYL)ALKYLAMINO]DIFLUORBORANE

| Me       | Et          | Pr            | Bu               | i-Pr         | Zuordnung                                       |
|----------|-------------|---------------|------------------|--------------|-------------------------------------------------|
|          |             |               |                  | 2985 m )     |                                                 |
| 2965 т   | 2970 m      | 2965 s        | 2960 s           | 2965 s       |                                                 |
|          | 2930 w      | 2940 sh       | 2930 m           | 2940 m       |                                                 |
| 2900 mw  | 2900 w      | 2900 m        | 2900 m           | 2900 mw }    | v (CH)                                          |
|          |             | 2880 m        | 2875 m           | 2880 w       |                                                 |
| 2860 sh  |             |               | 2865 sh          |              |                                                 |
| 2810 sh  |             | -             |                  | J            |                                                 |
| 1500 s   | 1501 ms     | 1500 s        | 1500 s           | 1500 s       |                                                 |
| 1471 vs  | 1486 s      | 1482 s        | 1482 s           | 1478 vs $\}$ | δ (CH)                                          |
|          | 1467 m      | 1464 s        | 1465 sh          | 5            |                                                 |
|          | 1454 sh     | 1448 sh       | 1450 sh          |              |                                                 |
| 1405 vs  | 1436 vs     | 1434 vs       | 1432 vs          | 1448 vs      | v (BN)                                          |
| 1391 sh  | 1412 sh     | 1412 sh       | 1412 sh          | 1409 m       |                                                 |
|          | 1378 m      | 1378 sh       | 1378 sh          | 1387 sh      |                                                 |
|          | 1366 sh     |               |                  | 1367 s       |                                                 |
|          | 1352 ms     | 1366 s        | 1365 s           | 1352 vs      |                                                 |
|          | 2004 mo     | 1342 w        | 1505.3           | 1552 15      |                                                 |
| 1338 vs  | 1318 vs     | 1320 vs       | 1320 vs          | 1307 vs      | » (BE )                                         |
| 1000 10  | 1294 m      | 120 v3        | 1705 ch          | 1507 43      | Vas(D1 2)                                       |
| 1265 sh  | 1264 sh     | 1250 sh       | 1253 Sh          | 1264         |                                                 |
| 1758 s   | 1253 6      | 1252 sh       | 1252 51          | 1755 0       | S (CH)                                          |
| 1250 3   | 1255 8      | 1255 5        | 1233 5           | 12558        | 0 <sub>s</sub> (CH)                             |
| 1168 h   | 1155        | 1160          | 1229 W           | 1177         |                                                 |
| 1108 D,W | 1155 W      | 1160 w        | 1139 W           | 11/2 w       |                                                 |
|          |             | 1144 W        | 1142 W           | 1146 mw }    | V(CN)                                           |
|          | 1101        | 1105 -1       |                  | 1132 w J     |                                                 |
|          | 1101 m      | 1005 50       | 1112 W           |              |                                                 |
| 1076 -   | 10/0        | 1086 sh       | 1000             |              |                                                 |
| 1076 \$  | 1068 m      | 1078 m        | 1088 m           |              |                                                 |
| 1017     | 1017        | 1022          | 1055 w           |              |                                                 |
| 1017 W   | 1017 W      | 1023 w        | 1035 w           |              |                                                 |
|          |             | 1001 w        | 978 sh           | 1008 sh      |                                                 |
| 923 s    | 937 m       | 952 m         | 969 mw           | 998 ms       |                                                 |
| 909 s    | 922 m       | <b>X</b> o- • | 910 ms           | 958 m        |                                                 |
| 898 sh   |             | 887 sh        |                  | 946 sh       |                                                 |
|          | a <b>1a</b> | 868 m         |                  | 864 s        | (                                               |
| 844 vs   | 842 vs      | 840 vs        | 841 vs           | 841 vs       | $\rho_{as}(CH)$                                 |
|          | 786 w       |               |                  |              |                                                 |
| 759 m    | 758 m       | 759 m         | 759 m            | 759 m        | $\rho_{s}(CH)$                                  |
| 753 m    |             |               |                  |              |                                                 |
| 690 sh   | 688 w       | 685 m         | 688 mw           | 692 m )      |                                                 |
|          |             |               | 677 mw           | }            | $v_{ns}(SiC_3)$ . $v(SiN)$                      |
| 666 ш    | ббб т       | 661 m         | 661 ms           | 668 ms )     |                                                 |
|          | 652 w       | _             |                  |              |                                                 |
|          |             | 615 w         | 616 <del>w</del> | 622 mw       | v <sub>s</sub> (SiC <sub>3</sub> ), Raman vs(p) |
|          |             |               |                  | 533 vw       |                                                 |
| 517 vw   |             | 522 w         | 518 w            | 523 vw       |                                                 |
| 472 w    | 497 w       |               |                  | 493 w        |                                                 |
|          |             |               |                  | 447 w        |                                                 |
|          | 390 w       |               | 396 w            | 386 w        |                                                 |

J. Organometal. Chem., 36 (1972)

•

Probleme der Zuordnung wegen der gleichartigen Lage und Intensität der  $\delta$ (CH)-Banden hingewiesen werden muss. Schwierigkeiten bereitet auch die Zuordnung der  $v_s(BF_2)$ -Schwingungen, während die Lage von  $v_{as}(BF_2)$  als einigermassen gesichert angesehen werden kann.

Sieht man einmal von v(SiN) ab, so ist die Angabe der Schwingungen der Me<sub>3</sub>Si-Gruppe verhältnismässig unproblematisch, da die Vielzahl der Vergleichsmöglichkeiten<sup>21</sup> und die konstante Lage der Banden eine Identifizierung erleichtern.

## BESCHREIBUNG DER VERSUCHE

Alle Versuche wurden unter Feuchtigkeitsausschluss teils in Stickstoffatmosphäre, teils in einer Hochvakuumapparatur durchgeführt.

Die Silylamine wurden durch Reaktion von Trimethylchlorsilan mit dem entsprechenden primären Amin nach der Methode von Sauer und Hasek<sup>22</sup> hergestellt. Bortrifluorid-Athylätherat und Diisopropyläthylamin waren handelsübliche Produkte, die vor ihrem Gebrauch frisch destilliert wurden. Trimethylfluorsilan wurde durch sein IR-Spektrum identifiziert.

Für die Massenspektren stand ein Varian MAT CH5-Gerät, für die <sup>19</sup>F-NMR-Messungen ein Varian A 56/60-Spektrometer zur Verfügung. Chem. Verschiebungen beziehen sich auf  $C_6F_6$  als externen Standard. Die IR-Spektren wurden von kapillaren Filmen zwischen KBr-Platten mit einem Perkin-Elmer-Gitterspektrometer Modell 325 aufgenommen.

## Darstellung der $BF_3 \cdot Me_3Si-NHR-Addukte$

Zu 0.2 Mol BF<sub>3</sub> · OEt<sub>2</sub> in 50 ml Äther werden unter Eiskühlung im Verlauf 1 Std. 0.2 Mol Me<sub>3</sub>Si-NHR getropft. Der ausgefallene Festkörper wird abfiltriert, mit wenig Petroläther gewaschen und bei 0° im Vakuum getrocknet. Isolieren lassen sich auf diese Weise die BF<sub>3</sub>-Addukte für R = Me(88°), Et(89°), Pr(76°), Bu(45°) und i-Pr (62°) in 70-80% Ausbeute. In Klammern sind die Schmelz- bzw. Zersetzungspunkte der frisch dargestellten Verbindungen angegeben. Im Falle von R = Bu lässt sich das Reaktionsprodukt nur erhalten, wenn höchstens 10 ml Äther als Lösungsmittel eingesetzt werden. R = Me (Gef.: C, 27.82; H, 7.60; B, 6.31; F, 33.3; N, 8.39. C<sub>4</sub>H<sub>13</sub>BF<sub>3</sub>NSi ber.: C, 28.09; H, 7.66; B, 6.32; F, 33.32; N, 8.19%).

Alle Verbindungen spalten bei Raumtemperatur langsam Me<sub>3</sub>SiF ab. Sie sind gut löslich in Dioxan und reagieren rasch mit Wasser. Erhitzt man eine Probe kurze Zeit in wenig Dioxan, so kristallisiert aus der Lösung das BF<sub>3</sub>-Addukt des entsprechenden prim. Amins BF<sub>3</sub>·RNH<sub>2</sub> aus. In der Lösung lässt sich NMR-spektroskopisch die gleichzeitige Bildung des Fluorborazin-Derivates (-RN-BF-)<sub>3</sub> beobachten.

# Darstellung von (t-Butylamino)difluorboran

 $BF_3 \cdot OEt_2$  (35.5 g, 0.25 Mol) wird in 100 ml Äther vorgelegt. Im Verlauf 1 Std. werden bei Raumtemperatur 36.25 g (0.25 Mol) Me<sub>3</sub>Si-NH-t-Bu zugetropft und die Lösung 24 Std. stehengelassen. Das auskristallisierende Produkt wird abfiltriert, mit Petroläther gewaschen und im Vakuum bei 25° getrocknet. Ausbeute 18 g (0.15 Mol, 60%) farblose Kristalle vom Schmp. 140° (Zers. Lit<sup>5</sup> 140°). (Gef.: C, 39.97; H, 8.50; B, 8.79; F, 31.0; N, 11.52; Mol.-Gew. osmometr. Dioxan, 243. C<sub>4</sub>H<sub>10</sub>BF<sub>2</sub>N ber.: C, 39.73; H, 8.34; B, 8.94; F, 31.42; N, 11.58%: Mol.-Gew. Dimer, 241. 9.).

# Darstellung der [(Trimethylsilyl)alkylamino]difluorborane

 $BF_3 \cdot OEt_2$  (1 Mol) wird unter Rühren und Eiskühlung mit 0.5 Mol Diisopropyläthylamin versetzt. Anschliessend wird 0.5 Mol Me<sub>3</sub>Si-NHR langsam zugetropft. Nach Entfernung der Eiskühlung wird die Reaktionsmischung 5 Std. bei Raumtemperatur gerührt. Die bei 0.02 mm bis 30° flüchtigen Produkte werden 10 Std. lang in eine Falle gezogen und der Äther im Wasserstrahlpumpenvakuum entfernt. Der Rückstand lässt sich durch Sublimation oder Destillation reinigen. Die Analysendaten und physikalischen Konstanten zeigt Tabelle 3.

#### **TABELLE 3**

| R          | Schmp. | Sdp.<br>(°C/mm)                                          | Ausb.          | Summenformel                                       | MolGew.<br>(Massenspektr.) | Analysen (%) |       |       |       |      |
|------------|--------|----------------------------------------------------------|----------------|----------------------------------------------------|----------------------------|--------------|-------|-------|-------|------|
|            | (°C)   |                                                          | (%)            |                                                    |                            | С            | н     | В     | F     | N    |
|            | 27     | 37 86 C <sub>4</sub> H <sub>12</sub> BF <sub>2</sub> NSi | Ber. 151.0     | 31.81                                              | 8.01                       | 7.16         | 25.16 | 9.27  |       |      |
| ме         | 37     |                                                          | 86             | $C_4H_{12}BF_2NSI$                                 | Gef. 151                   | 31.92        | 7.91  | 7.32  | 25.3  | 9.14 |
| <b>F</b> . |        | 22/42                                                    | 76             | C5H14BF2NSi                                        | Ber. 165.1                 | 36.38        | 8.55  | 6.55  | 23.02 | 8.49 |
| Εt         |        | 33/43                                                    | /0             |                                                    | Gef. 165                   | 36.46        | 8.62  | 6.42  | 23.0  | 8.57 |
| De         |        | 43/30                                                    | 92             | CH BE NS                                           | Ber. 179.1                 | 40.24        | 9.01  | 6.04  | 21.22 | 7.82 |
| 11         |        | $43/30$ 83 $C_6 H_{16} BF_2 NSI$                         | C61116D1 21101 | Gef. 179                                           | 40.12                      | 8.84         | 5.94  | 21.2  | 7.85  |      |
| ~          |        | 20.00                                                    |                | C <sub>7</sub> H <sub>18</sub> BF <sub>2</sub> NSi | Ber. 193.1                 | 43.54        | 9.40  | 5.60  | 19.68 | 7.25 |
| Bu         |        | 38/9                                                     | 80             |                                                    | Gef. 193                   | 43.35        | 9.31  | 5.45  | 19.5  | 7.22 |
| i-Pr       |        |                                                          | o              | Ber. 179.1                                         | 40.24                      | 9.01         | 6.04  | 21.22 | 7.82  |      |
|            |        | $41/34$ 59 $C_6H_{16}BF_2NS_1$                           | Gef. 179       | 40.25                                              | <b>8.9</b> 8               | 5.84         | 21.3  | 7.98  |       |      |

DARGESTELLTE [(TRIMETHYLSILYL)ALKYLAMINO]DIFLUORBORANE

Thermische Zersetzung der [(Trimethylsilyl)alkylamino]difluorborane

Das betreffende Aminoboran (0.2 Mol) wird ca. 10 Std. unter Rückfluss gekocht, wobei das bei dem Zerfall entstehende Me<sub>3</sub>SiF laufend über eine Kolonne abdestilliert wird. Es entstehen in quant. Ausbeute die Borazin-Derivate:

(-MeN-BF-)<sub>3</sub> Schmp. 89° (Lit.<sup>23</sup> 90.5°)

(-EtN-BF-)<sub>3</sub> Sdp. 64°/13 mm (Lit.<sup>23</sup> 26°/3 mm)

(--PrN-BF)<sub>3</sub> Sdp. 107°/15 mm (Lit.<sup>23</sup> 59°/3 mm)

(-BuN-BF-), Sdp. 102°/1 mm (Lit.<sup>23</sup> 89°/3 mm)

(-i-PrN-BF-)<sub>3</sub> Schmp. 36°, Sdp. 90°/14 mm (Lit.<sup>7</sup> Schmp. 36-38°, Sdp. 94-97°/12 mm)

## DANK

Für die Förderung dieser Arbeit danken wir dem Herrn Bundesminister für wissenschaftliche Forschung und der Deutschen Forschungsgemeinschaft sowie der Badischen Anilin- und Sodafabrik AG und den Bayerwerken Leverkusen.

#### LITERATUR

1 A. B. BURG UND E. S. KULJIAN, J. Amer. Chem. Soc., 72 (1950) 3103.

- 2 O. J. SCHERER, Organometal. Chem. Rev., Sect. A, 3 (1968) 281.
- 3 R. L. WELLS UND A. L. COLLINS, Inorg. Chem., 5 (1966) 1327.
- 4 G. ELTER, O. GLEMSER UND W. HERZOG, Chem. Ber., 105 (1972) 115.
- 5 N. N. GREENWOOD, K. A. HOOTON UND J. WALKER, J. Chem. Soc. A, (1966) 21.
- 6 N. N. GREENWOOD UND B. H. ROBINSON, J. Chem. Soc. A, (1968) 226.

### BORTRIFLUORID/SILYLAMIN-SYSTEME

- 7 J. J. HARRIS UND B. RUDNER, Inorg. Chem., 8 (1969) 1258.
- 8 H. NÖTH UND M. J. SPRAGUE, J. Organometal. Chem., 22 (1970) 11.
- 9 H. NÖTH UND H. VAHRENKAMP, Chem. Ber., 100 (1967) 3353.
- 10 P. GEYMAYER, E. G. ROCHOW UND U. WANNAGAT, Angew. Chem., 76 (1964) 499.
- 11 C. R. RUSS UND A. G. MACDIARMID, Angew. Chem., 76 (1964) 500.
- 12 P. GEYMAYER UND E. G. ROCHOW, Monatsh. Chem., 97 (1966) 429.
- 13 H. NÖTH UND H. VAHRENKAMP, Chem. Ber., 99 (1966) 1049.
- 14 G. E. RYSCHKEWITSCH, W. S. BREY UND A. SAJI, J. Amer. Chem. Soc., 83 (1961) 1010.
- 15 H. BAECHLE, H. J. BECHER, H. BEYER, W. S. BREY, J. W. DAWSON, M. E. FULLER JR. UND K. NIEDENZU, Inorg. Chem., 2 (1963) 1065.
- 16 J. GOUBEAU, M. RAHTZ UND H. J. BECHER, Z. Anorg. Allg. Chem., 275 (1954) 161.
- 17 A. J. BANISTER, N. N. GREENWOOD, B. P. STRAUGHAN UND J. WALKER, J. Chem. Soc., (1964) 995.
- 18 H. J. BECHER UND H. T. BAECHLE, Z. Phys. Chem. (Frankfurt am Main), 48 (1966) 359.
- 19 A. MELLER, Organometal, Chem. Rev., 2 (1967) 1.
- 20 H. BÜRGER UND F. HÖFLER, Spectrochim. Acta, Part A. 26 (1970) 31.
- 21 H. BÜRGER, Organometal. Chem. Rev. Sect. A, 3 (1968) 425.
- 22 R. O. SAUER UND R. H. HASEK, J. Amer. Chem. Soc., 68 (1946) 241.
- 23 K. NIEDENZU, H. BEYER UND H. JENNE, Chem. Ber., 96 (1963) 2649.